## QUIZ 11 SOLUTIONS: LESSONS 13-15 <br> OCTOBER 3, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

Fill in the green boxes for the following questions. Each green box is worth 1 point.

1. Consider the region $R$ bounded by


The volume obtained by revolving $R$ about the line $y=2$ is given by

$$
\mathrm{Vol}=\square \int_{\square}^{\square}\left[(\square)^{2}-(\square)^{2}\right] d \square
$$

## DO NOT EVALUATE.

Solution: We are revolving about a horizontal line and so we will have $x$-values for bounds and will integrate with respect to $x$. By the picture, the outer radius is $2-0=2$ and the inner radius is $2-(4-2 x)=2 x-2$. Putting this all together:

$$
\mathrm{Vol}=\pi \int_{[1}^{2}\left[(\sqrt[2]{2})^{2}-(\underline{2 x-2})^{2}\right] d x .
$$

2. Fill in the green boxes.

$$
\int_{0}^{\infty} \frac{x}{e^{x}} d x=\lim _{t \rightarrow \square} \int_{\square}^{\square} d x
$$

## DO NOT EVALUATE.

Solution: This is simply

$$
\int_{0}^{\infty} \frac{x}{e^{x}} d x=\lim _{t \rightarrow \infty} \int_{0}^{\frac{t}{e^{x}}} \frac{x}{\frac{x}{x}} d x
$$

